Hölder conditions and $$\tau $$-spikes for analytic Lipschitz functions
نویسندگان
چکیده
Let U be an open subset of \(\mathbb {C}\) with boundary point \(x_0\) and let \(A_{\alpha }(U)\) the space functions analytic on that belong to lip\(\alpha (U)\), “little Lipschitz class”. We consider condition \(S= \sum _{n=1}^{\infty }2^{(t+\lambda +1)n}M_*^{1+\alpha }(A_n \setminus U)< \infty ,\) where t is a non-negative integer, \(0<\lambda <1\), \(M_*^{1+\alpha }\) lower \(1+\alpha \) dimensional Hausdorff content, \(A_n = \{z: 2^{-n-1}<|z-x_0|<2^{-n}\). This similar necessary sufficient for bounded derivations at \(x_0\). show implies \((t+\lambda )\)-spike if \(S<\infty satisfies cone condition, then t-th derivatives in satisfy Hölder non-tangential approach.
منابع مشابه
CERTAIN SUFFICIENT CONDITIONS FOR CLOSE-TO-CONVEXITY OF ANALYTIC FUNCTIONS
The object of this paper to derive certain sucient condi-tions for close-to-convexity of certain analytic functions dened on theunit disk
متن کاملLipschitz and Hölder stability of optimization problems and generalized equations
This paper studies stability aspects of solutions of parametric mathematical programs and generalized equations, respectively, with disjunctive constraints. We present sufficient conditions that, under some constraint qualifications ensuring metric subregularity of the constraint mapping, continuity results of upper Lipschitz and upper Hölder type, respectively, hold. Furthermore, we apply the ...
متن کاملComposition Conditions for Classes of Analytic Functions
We prove that for classes of analytic functions tree composition condition and composition condition coincide.
متن کاملcertain sufficient conditions for close-to-convexity of analytic functions
the object of this paper to derive certain sucient condi-tions for close-to-convexity of certain analytic functions dened on theunit disk
متن کاملAnalyticity of Dirichlet-Neumann Operators on Hölder and Lipschitz Domains
In this paper we take up the question of analyticity properties of Dirichlet–Neumann operators with respect to boundary deformations. In two separate results, we show that if the deformation is sufficiently small and lies either in the class of C1+α (any α > 0) or Lipschitz functions, then the Dirichlet–Neumann operator is analytic with respect to this deformation. The proofs of both results ut...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Analysis and Mathematical Physics
سال: 2021
ISSN: ['1664-2368', '1664-235X']
DOI: https://doi.org/10.1007/s13324-021-00517-0